Non-negative Spherical Deconvolution (NNSD) for Fiber Orientation Distribution Function Estimation

نویسندگان

  • Jian Cheng
  • Rachid Deriche
  • Tianzi Jiang
  • Dinggang Shen
  • Pew-Thian Yap
چکیده

In diffusion Magnetic Resonance Imaging (dMRI), Spherical Deconvolution (SD) is a commonly used approach for estimating the fiber Orientation Distribution Function (fODF). As a Probability Density Function (PDF) that characterizes the distribution of fiber orientations, the fODF is expected to be non-negative and to integrate to unity on the continuous unit sphere S2. However, many existing approaches, despite using continuous representation such as Spherical Harmonics (SH), impose non-negativity only on discretized points of S2. Therefore, nonnegativity is not guaranteed on the whole S2. Existing approaches are also known to exhibit false positive fODF peaks, especially in regions with low anisotropy, causing an over-estimation of the number of fascicles that traverse each voxel. This paper proposes a novel approach, called Non-Negative SD (NNSD), to overcome the above limitations. NNSD offers the following advantages. First, NNSD is the first SH based method that guarantees non-negativity of the fODF throughout the unit sphere. Second, unlike approaches such as Maximum Entropy SD (MESD), Cartesian Tensor Fiber Orientation Distribution (CT-FOD), and discrete representation based SD (DR-SD) techniques, the SH representation allows closed form of spherical integration, efficient computation in a low dimensional space resided by the SH coefficients, and accurate peak detection on the continuous domain defined by the unit sphere. Third, NNSD is significantly less susceptible to producing Jian Cheng University of North Carolina at Chapel Hill, e-mail: [email protected] Rachid Deriche INRIA Sophia Antipolis, e-mail: [email protected] Tianzi Jiang Institute of Automation, Chinese Academy of Sciences, e-mail: [email protected] Dinggang Shen University of North Carolina at Chapel Hill, e-mail: [email protected] Pew-Thian Yap University of North Carolina at Chapel Hill, e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI

Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD),...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions

Diffusion-weighted MRI has enabled the imaging of white matter architecture in vivo. Fiber orientations have classically been assumed to lie along the major eigenvector of the diffusion tensor, but this approach has well-characterized shortcomings in voxels containing multiple fiber populations. Recently proposed methods for recovery of fiber orientation via spherical deconvolution utilize a sp...

متن کامل

A Modified Damped Richardson-Lucy Algorithm to Improve the Estimation of Fiber Orientations in Spherical Deconvolution

Introduction:. Standard spherical deconvolution approaches assume that HARDI signal can be modeled as a convolution between a common fiber response and a fiber orientation distribution function [1][2]. Recent spherical deconvolution methods improved the quality of the results introducing the non negative constraint of the solution [3][4][5]. It can be verified, however, that instability problem...

متن کامل

NODDI-SH: a computational efficient NODDI extension for fODF estimation in diffusion MRI

Diffusion Magnetic Resonance Imaging (DMRI) is the only non-invasive imaging technique which is able to detect the principal directions of water diffusion as well as neurites density in the human brain. Exploiting the ability of Spherical Harmonics (SH) to model spherical functions, we propose a new reconstruction model for DMRI data which is able to estimate both the fiber Orientation Distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013